Cache-based Document-level Neural Machine Translation
نویسندگان
چکیده
Sentences in a well-formed text are connected to each other via various links to form the cohesive structure of the text. Current neural machine translation (NMT) systems translate a text in a conventional sentence-by-sentence fashion, ignoring such cross-sentence links and dependencies. This may lead to generate an incohesive and incoherent target text for a cohesive and coherent source text. In order to handle this issue, we propose a cache-based approach to document-level neural machine translation by capturing contextual information either from recently translated sentences or the entire document. Particularly, we explore two types of caches: a dynamic cache, which stores words from the best translation hypotheses of preceding sentences, and a topic cache, which maintains a set of target-side topical words that are semantically related to the document to be translated. On this basis, we build a new layer to score target words in these two caches with a cache-based neural model. Here the estimated probabilities from the cache-based neural model are combined with NMT probabilities into the final word prediction probabilities via a gating mechanism. Finally, the proposed cache-based neural model is trained jointly with a state-of-the-art neural machine translation system in an end-to-end manner. On several NIST Chinese-English translation tasks, our experiments demonstrate that the proposed cache-based model achieves substantial improvements over several state-of-the-art SMT and NMT baselines.
منابع مشابه
Cache-based Document-level Statistical Machine Translation
Statistical machine translation systems are usually trained on a large amount of bilingual sentence pairs and translate one sentence at a time, ignoring document-level information. In this paper, we propose a cache-based approach to document-level translation. Since caches mainly depend on relevant data to supervise subsequent decisions, it is critical to fill the caches with highly-relevant da...
متن کاملLearning to Remember Translation History with a Continuous Cache
Existing neural machine translation (NMT) models generally translate sentences in isolation, missing the opportunity to take advantage of document-level information. In this work, we propose to augment NMT models with a very light-weight cache-like memory network, which stores recent hidden representations as translation history. The probability distribution over generated words is updated onli...
متن کاملA Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملA Document-Level SMT System with Integrated Pronoun Prediction
This paper describes one of Uppsala University’s submissions to the pronounfocused machine translation (MT) shared task at DiscoMT 2015. The system is based on phrase-based statistical MT implemented with the document-level decoder Docent. It includes a neural network for pronoun prediction trained with latent anaphora resolution. At translation time, coreference information is obtained from th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.11221 شماره
صفحات -
تاریخ انتشار 2017